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Introduction: History of Construction Cultures

We are what we build and how we build; thus, the study of Construction History is now more than ever at the
centre of current debates as to the shape of a sustainable future for humankind. Embracing that statement, the
present work takes the title History of Construction Cultures and aims to celebrate and expand our understanding
of the ways in which everyday building activities have been perceived and experienced in different cultures, times
and places.

This two-volume publication brings together the communications that were presented at the 7ICCH – Seventh
International Congress on Construction History, broadcast live from Lisbon, Portugal on 12–16 July 2021. The
7ICCH was organized by the Sociedade Portuguesa de Estudos de História da Construção (Portuguese Society for
Construction History Studies – SPEHC); the Lisbon School of Architecture, University of Lisbon; its Research
Centre (CIAUD); and the College of Social and Human Sciences of the NOVA University of Lisbon (NOVA
FCSH).

This is the first time the International Congresses on Construction History (ICCH) Proceedings will be
available in open access format in addition to the traditional printed and digital formats, embracing open science
principles and increasing the societal impact of research. The work embodies and reflects the research done in
different contexts worldwide in the sphere of Construction History with a view to advancing on the path opened
by earlier International ICCH editions. The first edition of ICCH took place in Madrid in 2003. Since then, it has
been a regular event organized at three-year intervals: Cambridge (2006), Cottbus (2009), Paris (2012), Chicago
(2015) and Brussels (2018).

7ICCH focused on the many problems involved in the millennia-old human activity of building practiced in
the most diverse cultures of the world, stimulating the cross-over with other disciplines. The response to this
broad invitation materialized in 357 paper proposals. A thorough evaluation and selection process involving the
International Scientific Committee resulted in the 206 papers of this work, authored by researchers from 37
countries: Australia, Austria, Belgium, Brazil, Bulgaria, Canada, China, Dominican Republic, Ecuador, Egypt,
Estonia, France, Germany, India, Iran, Ireland, Italy, Japan, Mexico, Netherlands, New Zealand, Norway, Peru,
Poland, Portugal, Puerto Rico, Russia, Serbia, Spain, South Africa, Sweden, Switzerland, Thailand, United Arab
Emirates, United Kingdom, United States of America, and Venezuela.

The study of construction cultures entails the analysis of the transformation of a community’s knowledge
capital expressed in the activity of construction. As such, Construction History is a broad field of knowledge that
encompasses all of the actors involved in that activity, whether collective (contractors, materials producers and
suppliers, schools, associations, and institutions) or individual (engineers, architects, entrepreneurs, craftsmen).
In each given location and historical period, these actors have engaged in building using particular technolo-
gies, tools, machines and materials. They have followed specific rules and laws, and transferred knowledge on
construction in specific ways. Their activity has had an economic value and belonged to a particular political
context, and it has been organized following a set of social and cultural models.

This broad range of issues was debated during the Congress in general open sessions, as well as in special
thematic sessions. Open sessions covered a wide variety of aspects related to Construction History. Thematic
sessions were selected by the Scientific Committee after a call for proposals: they highlight themes of recent
debate, approaches and directions, fostering transnational and interdisciplinary collaboration on promising and
propitious subjects. The open sessions topics were:

– Cultural translation of construction cultures: Colonial building processes and autochthonous cultures;
hybridization of construction cultures, local interpretation of imported cultures of building; adaptation of
building processes to different material conditions;

– The discipline of Construction History: Epistemological issues, methodology; teaching; historiography;
sources on Construction History;

– Building actors: Contractors, architects, engineers; master builders, craftspeople, trade unions and guilds;
institutions and organizations;

– Building materials: Their history, extraction, transformation and manipulation (timber; earth, brick and tiles;
iron and steel; binders; concrete and reinforced concrete; plaster and mortar; glass and glazing; composite
materials);

xi



– Building machines, tools and equipment: Simple machines, steam operated-machines, hand tools, pneumatic
tools, scaffolding;

– Construction processes: Design, execution and protective operations related to durability and maintenance;
organization of the construction site; prefabrication and industrialization; craftsmanship and workshops;
foundations, superstructures, roofs, coatings, paint;

– Building services and techniques: Lighting; heating; ventilation; health and comfort;
– Structural theory and analysis: Stereotomy; modelling and simulation; structural theory and structural forms;

applied sciences; relation between theory and practice;
– Political, social and economic aspects: Economics of construction; law and juridical aspects; politics and

policies; hierarchy of actors; public works and territory management, marketing and propaganda;
– Knowledge transfer: Technical literature, rules and standards; building regulations; training and education;

drawings; patents; scientific dissemination, innovations, experiments and events.

The thematic sessions selected were:

– Form with no formwork (vault construction with reduced formwork);
– Understanding the culture of building expertise in situations of uncertainty (Middle Ages-Modern times);
– Historical timber constructions between regional tradition and supra-regional influences;
– Historicizing material properties: Between technological and cultural history;
– South-South cooperation and non-alignment in the construction world 1950s–1980s;
– Construction cultures of the recent past: Building materials and building techniques 1950–2000;
– Hypar concrete shells: A structural, geometric and constructive revolution in the mid-20th century;
– Can engineering culture be improved by construction history?

Volume 1 begins with the open session “Cultural translation of construction cultures” and continues with all of
the thematic sessions, each one preceded by an introductory text by the session chairs. The volume ends with
the first part of the papers presented at the open sessions, organized chronologically. Volume 2 is dedicated to
the remaining topics within the general themes, also in chronological order.

Four keynote speakers were chosen to present their most recent research results on different historical periods:
Marco Fabbri on “Building in Ancient Rome: The fortifications of Pompeii”; Stefan Holzer “The role of tem-
porary works on the medieval and early modern construction site”; Vitale Zanchettin “Raphael’s architecture:
Buildings and materials” and Beatriz Mugayar Kühl “Railways in São Paulo (Brazil): Impacts on the construction
culture and on the transformation of the territory”.

The editors and the organizers wish to express their immense gratitude to all members of the International
Scientific Committee, who, despite the difficult context of the pandemic, worked intensively every time they
were called on to give their rigorous evaluation of the different papers.

The 7ICCH was the first congress convened under the aegis of the International Federation of Construction
History, founded in July 2018 in Brussels.Therefore, we are also very grateful to all the members of the Federation,
composed of the presidents of the British, Spanish, Francophone, German, U.S. and Portuguese Societies and
its Belgian co-opted member. A special thanks is due for all the expertise and experience that was passed on by
our colleagues who have been organizing this unique and world significant event since 2003, and in particular
to our predecessors from all the Belgian universities who organized 6ICCH.

The editors wish to extend their sincerest thanks to authors and co-authors for their support, patience, and
efforts. This two-volume work would not exist but for the time, knowledge, and generosity they invested in the
initiative.

Our sincere thanks also go out to Kate Major Patience, Terry Lee Little, Kevin Rose and Anne Samson for
proofreading every paper included here, and to the team atTaylor & Francis (Netherlands), in particular Germaine
Seijger and Leon Bijnsdorp.

Finally, we are grateful to all members of the Local Committee and to the institutions that have supported
both the 7ICCH event and the publication of these proceedings.

The Editors
João Mascarenhas-Mateus and Ana Paula Pires
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Pneumatic foundations in the bridges of the first Italian railways

M. Abita & R. Morganti
Università degli Studi dell’Aquila, L’Aquila, Italy

ABSTRACT: In the first half of the 19th century the French geologist Jacques Triger developed a construction
process useful for excavating waterlogged soils that applied a caisson to pump compressed air into the working
site. His invention was widely deployed in construction engineering, especially for sinking bridge pier foundations
in riverbeds. This technology was first used in Italy in the 1850s under the supervision of British and French
building companies. It served for the construction of many bridges in the new Italian railway network and resulted
from a fruitful collaboration between Italian and foreign technicians.This essay will describe the evolution of cast
iron and wrought iron caissons in Italy, a country which provided a favorable environment for the experimentation
of this new technology.

1 ITALIAN RAILWAYS: PNEUMATIC
FOUNDATIONS FOR NEW BRIDGES

In the first half of the 19th century, the political divi-
sion of the Italian territory led to the discontinuous
and complicated development of the railway network.
In 1840s, after the first line between Naples and Portici
was completed in the Kingdom of the Two Sicilies in
1839, initial railways began being built by the penin-
sula’s individual states with their different technical
and economic means. Furthermore, there were no
coordinated plans between the states that guaranteed
efficient connections between the country’s main cities
(Briano 1977).

In addition to difficulties in attracting resources and
the complicated dialogue between governments, other
problems arose due to geographic obstacles. They
sometimes entailed the choice of irregular routes in
order to avoid the inevitable technical and financial
commitments needed for the construction of bridges
and viaducts, necessary for more direct connections
between destinations.

One of the greatest difficulties related to bridge
building was the construction of bridge foundations
in riverbeds. This was usually solved using traditional
techniques that had various limitations. For example,
the Venetian Lagoon railway bridge, inaugurated in
1846 under Austrian rule, used deep foundations built
of larch and oak poles. These were fixed into the
ground and connected at the top to wooden boards
that supported the masonry required for the over two
hundred arches that made up the bridge. For other
bridges over narrow and shallow rivers, centuries old
technology was used requiring the deviation of the
watercourse or the insertion of bulkheads in order to
carry out excavations in the open air. However, the
use of these techniques was only possible in shallow

waters when the foundations did not reach more than
6–7 meters below ground level (Predari 1867).

In the 1840s, the development of pneumatic foun-
dations, tried out first in Britain and France, revo-
lutionised the way of building underwater: the new
procedure avoided the insertion of bulkheads and
allowed for deeper and continuous excavations and
required a smaller workforce.

Pneumatic foundations were required in Italy for the
construction of the bridges necessary for an efficient
national rail network but the backwardness of local
companies and industries led to the initial assignments
for these works being awarded to foreign companies
already able to apply the new technology. In particular,
between the 1850s and 1870s, firstly in the King-
dom of Sardinia and then in the Kingdom of Italy,
British and French companies, finding an ideal place
of application and research in the country, collaborated
with local technicians and deployed different types of
pneumatic foundations for the first time in Italy.

2 ORIGINS AND DEVELOPMENT OF
PNEUMATIC FOUNDATIONS

The mining industry was one of the main promoters of
studies concerning the use of compressed air. Already
in the 17th century, the requirement for underground
ventilation had led to the development of the first com-
pressors, able both to produce air at a higher pressure
than the surrounding atmosphere and to diffuse it into
any work space through a network of pipes (Drinker
1883).

Compressed air played a crucial role in the
extraction of coal from underground and underwater
deposits. In 1841, Jacques Triger used it to extract coal
from a deposit below the River Loire near the town
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of Chalonnes. In order to guarantee a dry work space,
Triger developed a sheet iron tube, open at the base and
closed at the top, from which the water was expelled
by pumping compressed air into the tube.The tube was
composed of rings with a diameter of one meter. These
were connected to each other with fishbolts and made
watertight using leather strips. In the upper section, an
airlock regulated the air pressure and the entry and the
exit of workers.

The airlock was an evolution of the early diving
bell, also known as "cloche de plongée", developed in
the 18th century that enabled the carrying out of the
first deep underwater explorations, aimed at recover-
ing cargo from sunken ships. The physicists Smeaton
and Coulomb saw its potential value in the building
sector (Curioni 1868).

The tube was gradually sunk into the riverbed with
the help of upper loads with the interior lighting pro-
vided by stearic candles or gas lamps. The air pressure
had to be kept below four atmospheres in order not to
compromise the health of workers.

Triger’s process received coverage in the publica-
tions of the time and showed more advantages than the
Potts’ system patented in the same period in Britain.
The Potts’system was based on reducing the air density
inside the tube so as to suck up water and sediments
and to ease penetration into the soil but also entailed
the regular suspension of work in order to empty the
tube when full of deposits (Dempsey 1855).

The process developed byTriger began to be applied
in other sectors and within a few years was being used
in the construction of underwater foundations in inco-
herent soils. Previously they had needed very long
poles which, due to their length, were susceptible to
shear stresses. By the late 1840s, Triger’s process was
under applications in France, Britain and the United
States for constructing bridge piers.

In 1851, for the construction of Rochester Bridge,
the British engineer John Hughes introduced impor-
tant innovations: he enlarged the airlock, equipped it
with a double compartment in order to improve the
regulation of the air pressure (Figure 1) and optimised
the construction process by combining the Triger and
Potts systems (Hughes 1859).

A few years later, the company responsible for
building the bridge over the River Medway was
involved in the construction of bridges in the new
Italian railway network.

3 PNEUMATIC FOUNDATIONS WITH CAST
IRON TUBES: THE SAVOY BRIDGES

Under the governance of the Count of Cavour, there
was a decisive turning point in the drive towards indus-
trial and infrastructural progress for the Kingdom of
Sardinia. The Piedmontese statesman, who considered
railways an effective means for economic and cul-
tural development, initiated a series of projects for
the construction of new railway routes that played
an important role even after the Unification of Italy.

Figure 1. Rochester Bridge: the caissons built in 1851 by
Fox & Henderson Company (Hughes 1859).

Between 1852 and 1853, Cavour worked on complet-
ing the line between Turin and Genoa but, above all,
he provided for the construction of new lines dedi-
cated to international connections, in particular links
with Lombardy, then in Austrian territory, France and
Switzerland (Cavicchioli 2009).

For the line between Turin and Novara, which was
later extended to connect with Milan, Cavour signed
an agreement with a group of British entrepreneurs
guided by the well-known contractor Thomas Brassey
(Stefani 1853), the designer of several railways in
Great Britain and Europe and who had managed to
complete 100 km of railways in three years. For the line
betweenTurin and Culoz, also known as the Fréjus rail-
way, the Vittorio Emanuele company was founded in
1853, backed by French financiers who also acquired
control of the line to Milan after a few years.

The crossing of rivers in a mountainous area
involved the construction of railway bridges and
viaducts, which required recourse to pneumatic foun-
dations.

3.1 Pneumatic foundations of the bridges built in
the railway line between Turin and Novara

Thomas Brassey entrusted the construction project
for the railway line between Turin and Novara to the
British engineer Thomas Jackson Woodhouse. The
two had already collaborated in Italy, building the the
line between Prato and Pistoia. The engineer Edward
Francis Murray, who was involved in completing the
railway line between Turin and Genoa, together with
Woodhouse and the Italian engineers C. Bermani and
V. Ferrari designed four bridges built over the Rivers
Stura, Orco, Mallone and Agogna (Murray 1883).

They used the same layout: continuous deck bridges
sustained by four supports, two of which were placed
in the riverbed. Two wrought iron girders, stiffened
using a riveted lattice between the chords, and vertical
members supported the single rail (Figure 2).

The use of cast iron tubes sunk into the ground using
Triger’s pneumatic process was chosen for the bridge
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Figure 2. Railway bridge near Novara: the piers built in 1855
by the same company of Rochester Bridge (Fassò 1880).

Figure 3. Railway bridge over the River Isère near Cruet:
the continuous wrought iron truss (Goutagny Postcard 1889).

piers and the project was managed by Fox & Hen-
derson Company, known for their participation in the
construction of Crystal Palace in London and also for
setting the foundations for the bridge over the River
Medway in Rochester (Casalis 1855).

For each pier they used two cast iron cylinders,
which were between 7 and 10 meters long and made
of rings, with the height and diameter both measuring
1.5 meters. The sinking was carried out by creating an
airlock at the top of the tubes that ensured the regula-
tion of compressed air which was injected by a steam
pump. Once the water had been expelled from the tube,
the excavation was carried out by two workers, assisted
from the outside by two co-workers.

The sinking of the tubes was rapid: for the bridge
over the River Agogna near Novara, each cast iron
cylinder was sunk to a depth of 7 meters in a period of
between two and three days. Once sunk, the tubes were
filled with concrete and then connected at the top by
wrought iron beams that supported the masonry works.

Above the tubes, walls also acted as the formwork
for a further cast of concrete that stabilised the sinking
of the cylinders (Pozzi 1892). The technology applied
in the piers of the four bridges of the line between
Turin and Novara was also used in Savoy, where some
innovations developed in France were also introduced.

Figure 4. Cruet Bridge: a pier and its upper rubble masonry
sustained by pneumatic foundations (Decker 2020).

Figure 5. Cruet Bridge: the arrangement of the cast iron
tubes and their connections (Courtesy of ACN&P).

3.2 Pneumatic foundations of the bridges built in
the railway line between Turin and Culoz

The rail connection between Turin and Savoy, which
was part of the Kingdom of Sardinia until 1861, was
a complex challenge. The Alpine mountains did not
allow for any direct route and furthermore needing the
construction of a tunnel through Mount Fréjus.

For the laying of the track beyond the tun-
nel, between Modane and Chambéry, the Vittorio
Emanuele Company once again involved Thomas
Brassey. George Neumann, a British engineer who had
trained in Switzerland and France, was commissioned
to design the railway line (Neumann 1867).

Neumann also oversaw the construction of two
important bridges: one over the River Isère near Cruet
and another over the River Rhone near Culoz on the
French border. Both involved the use of large spans,
greater than 150 meters, and a structure with a con-
tinuous truss supported by multiple piers (Figures 3
and 4).

The truss was built of riveted profiles with different
sections and was visually characterized by the way in
which these diagonal braces were inserted in the spaces
between the chords and vertical members with the arch
shaped portal struts (Messiez 1992).
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Figure 6. Cruet Bridge: the depth of the cast iron tubes and
their concrete filling (Courtesy of ACN&P).

Figure 7. Culoz Bridge over the River Rhone: the same truss
used near Cruet (Ministère des travaux publics 1873).

The piers of the two bridges were built with pneu-
matic foundations. Different companies were involved
in their construction, each with their own technical
solutions.

The same company as commissioned by Brassey
for the bridges on the line between Turin and Novara
participated in the piers for the Cruet bridge, also
known as Pont des Anglais. The larger dimensions of
the bridge required the adaptation of devices used in
the construction process.

Three cast iron cylinders were used for each pier,
each with a diameter of two meters (Figure 5). These
were sunk to a minimum of four meters below ground
level. In addition to the wrought iron beams joining the
top of the tubes, the connection was also made using
a one meter high iron sheet to delimit the edge of the
masonry (Figure 6). The upper part of the piers was a
rubble masonry with stone ashlars on the perimeter and
a concrete filling that formed a massive and compact
element (Decker 2020).

The construction of the Culoz bridge, which marked
the border between the Kingdom of Sardinia and

Figure 8. Culoz Bridge: the geometry and connections of
the cast iron cylinders (Goüin 1878).

Figure 9. Railway bridge over the River Po in Piacenza: the
piers built by a French company (Bernardi Postcard 1890).

France, entailed a collaboration agreement between
different companies from the two countries. The iron
deck was built by the Vittorio Emanuele Company,
who chose the same deck designed for the Cruet
bridge and decorated it with the French and Savoy
coat of arms. The foundations and other riverbed
improvement works were managed by the Society
of Lyon-Geneva Railway Line, which commissioned
Ernest Goüin et Cie Company to build the piers
(Figure 7). Between 1856 and 1857, twelve cast iron
cylinders were sunk below the riverbed to a depth of
10 meters usingTriger’s procedure and filled with con-
crete (Park-Barjot 2005). Unlike on previous bridges,
the Parisian company did not carry out masonry work
but extended the height of the tubes. These were con-
nected three by three by wrought iron trusses and
directly supported the deck (Figure 8). With this solu-
tion, the piers were less bulky giving the bridge a
greater visual permeability (Goüin 1878).
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Figure 10. Railway bridge near Pontelagoscuro: the piers
built with wrought iron caissons (Prampolini Postcard 1902).

Other railway bridges were built after the Unifi-
cation of Italy with all benefiting from the technical
advancements surrounding pneumatic foundations.

4 PNEUMATIC FOUNDATIONS WITH
WROUGHT IRON CAISSONS: THE BRIDGES
OVER THE RIVER PO

Developing the railway network also remained one
of the main objectives for the new Kingdom of Italy,
which was finally able to link the partially built lines
in its different regions.

In particular, the government focused on connect-
ing the lines between Lombardy, Emilia Romagna and
Veneto, separated by the River Po, which was difficult
to traverse and between 300 and 400 metres wide in
places.After the examination of the available resources
and possible technical solutions, the construction of
various bridges over the river began in 1861. These
included the four bridges necessary to complete the
Milan-Genoa, Milan-Piacenza, Ferrara-Rovigo and
Mantua-Modena railway lines (Besso 1870).

The respective locations chosen were Piacenza,
Mezzana Corti, Pontelagoscuro and Borgoforte with
the same structural layout chosen: a wrought iron truss
in the upper part, which was able to outdistance the
supports as much as possible, and with tall piers in
the lower section to contain the river in case of flood-
ing. The piers had to be fixed into the riverbed using
Triger’s process, which had itself undergone some
improvements.

At the end of the 1850s, for the Saltash bridge over
the River Tamar near Plymouth, the engineer Brunel
improved the process by dividing the space between
the walls of the cast iron cylinder with diaphragms.
This was useful for differentiating the compressed air
input channels from those for excavated materials and
workers. For the bridge over the River Rhine in Kehl
near Strasbourg, the engineer Fleur St. Denis, mindful
that the greater depth of the tubes sometimes com-
promised their verticality, experimented with using a
wrought iron caisson which was as large as the upper
part of the pier and had a cutting edge at the base
(Bruno 1892).

Thanks to the Fleur St. Denis innovation, wrought
iron caissons were rapidly preferred to cast iron

Figure 11. Piacenza Bridge: the sinking process and
wrought iron caisson equipped with three tubes (Biadego
1886).

cylinders, indeed the new devices were used for the
piers of the River Po bridges. In particular, the bridges
in Piacenza and Pontelagoscuro represent the most sig-
nificant cases regarding the first Italian application of
this foundation type (Figures 9 and 10).

4.1 Pneumatic foundations of Piacenza Bridge

The design of the bridge linking the railway line
between Milan and Piacenza was supervised by the
engineer Giovanni Battista Biadego, who chose a
continuous wrought iron truss 280 meters long and
supported by seven piers placed in the riverbed. The
works were entrusted to the Parent, Schaken, Caillet et
Cie Company, based in Fives-Lille and directed by the
engineer Félix Moreaux, who had also participated in
constructing the bridge in Culoz.

All the piers were 30 meters high. They were sunk
into the ground reaching a depth of 20 meters using
pneumatic caissons similar to those used two years
earlier in Kehl and now applied in Italy for the first
time. Each caisson was made of riveted wrought iron
sheet that was 1.2 cm thick. It was open at the base
with a cutting edge and closed on the top, forming a
work space 2.2 meters in height. Three wrought iron
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Figure 12. Piacenza Bridge: the construction details of the
wrought iron caisson (Biadego 1886).

tubes were joined to the ceiling of this space: two were
equipped with airlocks on the top and were used for the
compressed air regulation and the passage of workers;
another included a dredge which excavated and lifted
earth (Figure 11).

The ceiling of the caisson was stiffened with iron I
beams and served as formwork for the upper masonry
works (Figure 12). The Piacenza Bridge was also the
first in Italy to be equipped with new systems of natu-
ral and artificial lighting: convex lenses were located
in the airlock roof and electric lamps illuminated the
work space and had the advantage of not consuming
oxygen.

The construction of each pier from start to finish
was carried out by a team of only ten workers. They
were also responsible for the eight hoists used to keep
the caissons horizontal. The hoists were set on a tem-
porary wooden bridge, built to facilitate construction.
The workers also undertook the filling of the work
space and chimneys with concrete at the end of the
sinking phase.

The construction of the piers began in August 1862
but the collapse of a section of the temporary wooden
bridge caused a year-long suspension of work. After
the reorganization of the construction site and the

Figure 13. Pontelagoscuro Bridge: the sinking process of
the piers and construction details of the caisson (Ratti 1876).

recovery of the materials, work continued and was
completed in 1865 (Biadego 1886).

4.2 Pneumatic foundations of Pontelagoscuro
Bridge

The line between Bologna and Pontelagoscuro had
opened in 1862 and connecting it with Venice required
a bridge over the River Po spanning over 350 meters.

The bridge was designed by the engineer Gaetano
Ratti with a continuous wrought iron truss supported
by five piers set in the riverbed. Unlike the bridge in
Piacenza, the truss was composed of U profiles for
the chords and I profiles for the diagonal braces, with-
out any internal vertical members. The works were
conducted by the same French company, with the col-
laboration of the entrepreneur Jean-François Cail, who
had also been involved in the construction of several
European railways.

As with the Piacenza bridge, the company applied
wrought iron caissons for the piers and developed
a new system for transporting the excavations. This
was designed by the director Moreaux and partially
experimented the works of Mezzana Corti Bridge.

The dredger usually placed in the central chimney,
often caused imbalances in the compressed air in the
work space and sometimes the chimney got obstructed
by excavated material. In order to solve these prob-
lems, Moreaux developed a caisson that was 11 × 5
meters wide, with two chimneys equipped with air-
locks that participated in the excavation movements
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Figure 14. Pontelagoscuro Bridge: the airlock designed for
the side piston and the airtight bucket (Ratti 1876).

Figure 15. Sesto Calende Bridge: the piers built by the
Italian Industry of Metal Construction (Fotocromo Postcard
1902).

while limiting the loss of compressed air.A three meter
high cylinder, with a diameter of 25 cm, was joined
to the airlocks with a compressed air powered pis-
ton inside (Figures 13 and 14). This piston controlled
ropes and pulleys that were managed by a worker who
received the excavated material coming up from the
work space.

The full buckets emptied into a container affixed to
a trolley which, on being pushed outside, automatically
introduced an empty container into the airlock.

Local materials, such as concrete made from Palaz-
zolo and Domegliara limestone, were used for the
upper masonry. The works began in 1870 and fin-
ished the following year in accordance with the system
patented by the company (Ratti 1876).

Figure 16. Sesto Calende Bridge: the addition of an
antechamber and a discharge pipe to the airlock (Bruno 1892).

Further innovations to the construction process did
not change substantially. Advancement focused on
mechanizing the airlock, optimizing the compressed
air seal and more efficient removal of the excavated
materials.

5 CONCLUSIONS

Between the 1850s and 1870s, the deployment of
pneumatic foundations was crucial in the conception
and construction of the infrastructures necessary for
national economic and commercial growth.

The early assignment of these works to British and
French companies highlighted the backwardness of
the Italian construction sector with this scenario only
beginning to change at the end of the 1870s with the
affirmation of national companies such as the Italian
Industry of Metal Construction. It was the first to use
cast iron cylinders for constructing the Ripetta Pedes-
trian Bridge, built in Rome in 1878, and wrought iron
caissons for the railway bridge built over the Ticino
River in Sesto Calende in 1882 (Carughi 2003).

For the bridge in Sesto Calende, designed by the
engineer Giovanni Battista Biadego (Figures 15 and
16), the company directed by Alfredo Cottrau applied
airlocks that followed the model of those used at
Pontelagoscuro with the only changes being the addi-
tion of an antechamber and further means for casting
concrete (Biadego 1886). These technical solutions
demonstrated the skills built up by national companies,
now finally able to manage imported technological
innovations and compete at the European level.
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